C C RoHS2

Centering location type suitable for mounting

- Wants center point of axis as reference for installation
- Wants to stop vibration & fix main unit
- Other reasons that require to fix main unit

Can be mounted with excellent centering effect.

- Insert the extended part.
- st For this setup use double disc couplings on both sides.
- * If main unit starts to rotate, install stopper while avoiding excessive force on the main unit.

■ UTMII-0.05Nm (C) to 500Nm (C)

Measurement range	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	Ν	0	Р	Q	Weight
0.05		31.5	32	49	6.1	25	20h7	5h7	12	6.8		0.2	54	3	26	32	M3 depth5	
0.1																		App.150g
0.2	14																	
0.5								8h7		11.8								App.170g
1																		
2																		
5			37	54		30	25h7	12h7	13.5	16.7	18.5	0.3	57					App.260g
10																		
20			47	63		41	36h7	20h7	23	36.5	24		70		40	40	M3 depth6	App.690g
50										46.5	24				40			
100			56	63.5		48	40h7	25h7	18.5	51.5	28	0.5			46	38		App.1.07kg
200			61	68		51	45h7	30h7		56.5	30		67		50	30		App.1.46kg
500			71	78		62	55h7	40h7		70.5	35			4 63	63	30		App.2.57kg

■ Supplied cable

PWR (+24V)
PWR GND
SIG OUT (±10V)
SIG GND
PULSE OUT
(Open collector)
PULSE GND
DIGITAL ZERO IN
RS-485 TX +
RS-485 TX +
RS-485 RX +
COM

2:PWR GND ,4:SIG GND & 6:PULSE GND are separate isolated ground. 2:PWR GND & 12:COM are connected internally.

Mechanism of UTM series

UTM adopts strain gauges for detecting torsional strain, which is converted into an electric signal by a strain amplifier fixed on the rotating shaft. Electric power for the rotary electronics is supplied continuously through a wireless power system originally developed by UNIPULSE. The detected torque signal is converted into a digital signal, and it is transmitted to the main-frame electronics via a light signal. The rotating shaft is suspended with only two small bearings, resulting in very low rotational friction.

